# 2014 Rocky Mountain Regional Programming Contest 

## Solution Sketches

## Credits

- Darko Aleksic
- Babak Behsaz
- Howard Cheng
- Peter Høyer
- Warren MacEvoy


## Server

- xxx submissions, xxx correct, first correct: xxx minutes
- Straightforward
- Process each task in order, keeping track of the total number of minutes so far.


## Eligibility

- xxx submissions, xxx correct, first correct: xxx minutes
- Straightforward
- Just apply the rules one at a time, stopping as soon as a decision is known.
- No need to look at month/day of a date, just the year.


## Plane Ticket Pricing

- xxx submissions, xxx correct, first correct: xxx minutes
- Dynamic Programming
- Let $f(n, w)=$ the maximum revenue that can be obtained when there are $n$ seats left and $w$ weeks before the flight.
- Base case: $f(n, w)=0$ when $n \leq 0$ or $w<0$.
- Recursion:

$$
f(n, w)=\max _{1 \leq i \leq K_{w}}\left\{f\left(n-s_{i, w}, w-1\right)+p_{i, w} \cdot s_{i, w}\right\}
$$

- Minor adjustment above if $n<s_{i, w}$.
- Complexity: $O(N W K)$
- xxx submissions, xxx correct, first correct: xxx minutes
- We can model this as a bipartite graph: one set of nodes are the clients, and the other set of nodes are the potential locations.
- We connect a client to a location if the cost is 0 .
- The locality property implies that each connected component is a complete bipartite subgraph-so each connected component can be served by just one facility.
- i.e. If the number of connected components is at most $k$, then it is possible.


## Repeated Substrings

- xxx submissions, xxx correct, first correct: xxx minutes
- Use suffix arrays and the Longest Common Prefix (LCP) array.
- Whenever LCP[ $i]>\operatorname{LCP}[i-1]$, the difference is the number of unique substrings repeated.
- Sum up all such differences.
- For the first sample input "aabaab"

| Prefix | LCP |
| :--- | :--- |
| aab | 0 |
| aabaab | 3 |
| ab | 1 |
| abaab | 2 |
| b | 0 |
| baab | 1 |

## Landline Telephone Network

- xxx submissions, xxx correct, first correct: xxx minutes
- Form the weighted undirected graph as given.
- Without any insecure buildings, this is just the standard Minimum Spanning Tree problem.
- The insecure buildings must be leaves in the spanning tree, the other ones can be internal nodes or leaves.
- Compute the MST without the insecure buildings. For each insecure building, connect it to the MST using the cheapest edge.


## Aquarium Tank

- xxx submissions, xxx correct, first correct: xxx minutes
- Two possible approaches (among others):
- First approach: "walk up" the polygon and figure out how high the water goes.
- Second approach: guess the height and compute the resulting volume. Use binary search to refine the height.
- Either way: need to intersect polygon with horizontal lines, and compute the area of a polygon or trapezoid.


## Restaurant Ratings

- xxx submissions, xxx correct, first correct: xxx minutes
- Approach 1: make use of the fact that the number of integer solutions $x_{1}, \ldots, x_{n} \geq 0$ such that $x_{1}+\cdots+x_{n}=r$ is $\binom{r+n-1}{r}$.
- We can find the number of ratings less than the given total.
- Use the above to find the number of worse ratings with the same total, but with the same first $k$ ratings
- Approach 2: Dynamic Programming
- State is $(a, k, s)$ : $a$ is rating already worse?, $k$ rating index, $s$ remaining rating sum.
- $f(1, k, s)=\sum_{i=0}^{s} f(1, k+1, s-i)$
- $f(0, k, s)=f\left(0, k+1, s-r_{k}\right)+\sum_{i=0}^{r_{k}-1} f(1, k+1, s-i)$ $+\sum_{i=r_{k}+1}^{s} f(1, k+1, s-1-i)$
- base case $f(x, n, y)=f(x, y, 0)=1$, answer is $f(0,0, S)$ where $S$ is the total rating


## Locked Treasure

- xxx submissions, xxx correct, first correct: xxx minutes
- The answer is $\binom{n}{m-1}$.
- For each subset of $m-1$ bandits, there must be at least one lock that they cannot open (lower bound).
- For each subset of $m-1$ bandits, have one lock such that the keys are distributed to all others who are not in the subset. Any group of $m$ bandits must have a key to every lock (upper bound).


## Yet Satisfiability Again!

- xxx submissions, xxx correct, first correct: xxx minutes
- Exhaustive search.
- Just try all possible $2^{n}$ truth-value assignment to the variables and test if the clauses are all satisfied.

